A set S is countable if it can be put in one-to-one correspondence with $N$. For example, if we take the set of even numbers, we can establish a one-to-one correspondence as follows. $1$ corresponds to $2$, $2$ to $4$, $3$ to $6$, and so on. This shows that the number of even numbers is equal to the number of natural numbers.
The famous mathematician Hilbert told the story of a hotel with an infinite number of rooms. Suppose the Hilbert Hotel is full, but the hotel manager wants to accommodate a guest who arrives suddenly. How does he manage that? Well, he asks the guest in room number $1$ to move to Room $2$, the guest in Room $2$ to move to Room $3$, and so on. Room $1$ becomes empty and is readied for the new guest. Can you figure out how to accommodate $30$ guests, even if the hotel is full?






Leave a comment